프리세일즈 도큐멘토 나라장터 입찰 제안서 다운로드 제공, 시간을 줄여주는 세일즈 문서, 홈페이지 구축 제안서 판매

ML 모델 배포

What are the four 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗠𝗼𝗱𝗲𝗹 𝗗𝗲𝗽𝗹𝗼𝘆𝗺𝗲𝗻𝘁 𝗧𝘆𝗽𝗲𝘀?

Even if you will not work with them day to day, the following are the four ways to deploy a ML Model you should know and understand as a MLOps/ML Engineer.

➡️ 𝗕𝗮𝘁𝗰𝗵:

👉 You apply your trained models as a part of ETL/ELT Process on a given schedule.
👉 You load the required Features from a batch storage, apply inference and save the results to a batch storage.
👉 It is sometimes falsely thought that you can’t use this method for Real Time Predictions.
👉 Inference results can be loaded into a real time storage and used for real time applications.

➡️ 𝗘𝗺𝗯𝗲𝗱𝗱𝗲𝗱 𝗶𝗻 𝗮 𝗦𝘁𝗿𝗲𝗮𝗺 𝗔𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻:

👉 You apply your trained models as a part of Stream Processing Pipeline.
👉 While Data is continuously piped through your Streaming Data Pipelines, an application with a loaded model continuously applies inference on the data and returns it to the system - most likely another Streaming Storage.
👉 This deployment type is likely to involve a real time Feature Store Serving API to retrieve additional Static Features for inference purposes.
👉 Predictions can be consumed by multiple applications subscribing to the Inference Stream.

➡️ 𝗥𝗲𝗮𝗹 𝗧𝗶𝗺𝗲:

👉 You expose your model as a Backend Service (REST or gRPC).
👉 This ML Service retrieves Features needed for inference from a Real Time Feature Store Serving API.
👉 Inference can be requested by any application in real time as long as it is able to form a correct request that conforms API Contract.

➡️ 𝗘𝗱𝗴𝗲:

👉 You embed your trained model directly into the application that runs on a user device.
👉 This method provides the lowest latency and improves privacy.
👉 Data in most cases is generated and lives inside of device significantly improving the security.




--------------------------------------------------------

바로가기 (새창) : https://www.linkedin.com/posts/aurimas-griciunas_mlops-machinelearning-dataengineering-activity-7148234601189089281-Bvdu/?utm_source=share&utm_medium=member_android

도큐멘토에서는 일부 내용만을 보여드리고 있습니다.

세부적인 내용은 바로가기로 확인하시면 됩니다.



고객센터

10:30~16:00

주말,공휴일 휴무

프리세일즈 도큐멘토  |  정부지원 나라장터 입찰 제안서 및 실무 기획서 등 제공

문서는 포멧만으로도 가이드가 된다, 문서에서 받는 멘토링은 사수보다 많다

---

아마란스  |  682-53-00808  |  제2023-수원권선-0773호

출판사 신고번호 : 제 2023-000074호

경기도 광명시 소하로 190, 12층 비1216-50(소하동, 광명G타워) 

070-4566-1080

이  메  일 : korea@amarans.co.kr
입금계좌 : 카카오뱅크, 아마란스, 3333-26-7731937


제안서 도큐멘토 브런치 게시글 바로가기제안서 도큐멘토 네이버 블로그 바로가기
제안서 도큐멘토 카카오 채널 바로가기
제안서 도큐멘토 RSS 바로가기